
1

Low Power Implementation in

the 2008.09 Release

Jonathan Dawes

12th May 2009

2

The aim is to:

• Make you comfortable with SAIF

• Demystify the tool’s manipulations of SAIF

• Get the best activity information possible

Achieve the best possible dynamic power

What is the purpose of this tutorial?

3

• Overview of power optimisation

• Activity information and SAIF

• How to generate good SAIF

• How to use it correctly through the flow

• What can we do if we don’t have good

SAIF?

– How to combine SAIF data from multiple

sources including subblocks

Agenda

4

What are the types of power usage?

• Leakage power

– Cells that are not switching, but “leak” power

– This reduces standby battery life

– Address with Multi-Vt libraries

• Dynamic power

– Power used by performing work

– Charging up loads

– This reduces the working-time of your battery

– Addressed in many ways.

5

Optimisations for dynamic power

during synthesis

• Remap architecture to reduce power cost

• Bury high activity nets inside complex cells

• Swap high activity nets onto low-load pins

All these are performed automatically by DC

Phase Assignment

1

2 : 1

Mux

6

area = 7

A

B

TR = .7

TR = .3

area = 6

1

2 : 1

Mux

5B

A
TR = .7

TR = .3

Pin Swapping

f

Cpin = 1.5C1

Cpin = C1

Toggle Rate = .4

Toggle Rate = .8

bb

a

c

d

f

Cpin = 1.5C1

Cpin = C1

Toggle Rate = .8

Toggle Rate =.4

d

b

c

a

6

Optimisations for dynamic power

during place & route

• Low Power Placement

– shorten busy nets,

so reducing the load

• optimize_pre_cts_power

– Merge/Split/Remove/Optimize clock gating

– Reduce the dynamic power of the clock tree

– Reduce the dynamic power of data logic through
improved clock gating

– Physically aware clock gating

Tr = 0.3

Tr = 0.8

Tr = 0.3

Tr = 0.8

7

Activity information is the key

• Dynamic power is power used doing work

• We need to tell the tools what work looks

like, and where it is done.

• This drives all dynamic power optimisation

• We must provide “activity” information for

objects in the design.

• This is normally a SAIF file

Switching Activity Interchange Format

8

How good is your SAIF?

• Do you have the “perfect” SAIF file?

– Accurately represents the real-world activity

– Leaves no gaps or grey areas

– Lucky you! Go and take a break!

• Or maybe not…

– Can’t run gate-level sims early enough?

– Don’t have a single toplevel testbench?

– Need to combine data from multiple sources?

• Have you given up on dynamic power?

9

The worst case scenario

• The tools will assign “default” activity

– 10% toggle rate wrt the fastest clock

• You can improve this by specifying more
set_switching_activity –static_probability

0.5 –toggle_rate 0.2 [get_port in]

• The tool will propagate this data

10

The best activity information

• Use real activity information captured from

an RTL or preferably gate-level simulation

• We will look at proven ways of doing this

• We will also look at combining data from

multiple sources

• The aim is to get the very best activity data

11

Obsolete flows for generating SAIF

• RTL forward SAIF

– rtl2saif is to be removed

• PLI and DPFLI

12

Generating SAIF in VCS

• RTL Simulation

– Direct SAIF

– VCD to SAIF

– VPD to VCD to SAIF

• Gate Level Simulation

13

RTL Direct SAIF

• Advantages

– Simple to use

– Directly written out of VCS

– No storage overhead

• Issues

– System Verilog not well supported

– Multi Dimensional Arrays not supported

– This may result in low annotation due to gaps

14

RTL VCD to SAIF

• Advantages

– This is the correct flow for System Verilog

• Issues

– VCD file gets very large during simulation

– Some SV constructs still being worked on.

• Interfaces is the biggest gap

– However, this will only create small gaps.

• Propagation will back-fill lots of these

15

RTL VPD-VCD-SAIF

• Advantages

– All the same benefits of VCD2SAIF

– VPD is a lot smaller during simulation

• Issues

– Still need to generate a VCD file on the fly

– Same System verilog issues as VCD-SAIF

– 3 step flow

16

Gate-level simulation

• Advantages

– Simple

– Maps directly to the gates you are optimising

– Accuracy is much higher as real gates can be
observed

• Issues

– Gate level simulations may only be possible
late in the flow

– Long simulation runtimes

17

SAIF mapping

18

Why do we need SAIF mapping?

• Synthesis changes the names of many

objects

• Netlist-driven tools need to match the

RTL SAIF object names to gates

– ICC

– DC (multi-pass)

– Primetime PX

19

DC recommended flows

• Initial compile
– Read RTL and RTL SAIF

– compile

– Either
• Write a gate-level SAIF out

– OR,
• Write out DC and PT-PX name maps

• Subsequent compile incremental flow (ASCII)
– Read DC SAIF

– OR use the name map from initial compile and
read RTL SAIF

20

• DDC retains the activity information

• Read netlist and RTL SAIF plus DC map
– Also use -auto_map_names

– Best coverage comes from using a map file and -
auto_map_names*

• Optionally write a PTPX SAIF map out
– May catch a few name changes

*Note read_saif will not accept -map_names at the same time as

-auto_map_names. Always use –auto_map_names

ICC recommended flow

21

• Read a netlist plus its related map file

• Read the RTL SAIF

PrimeTime – PX flow

22

Example Flow With RTL SAIF

23

saif_map -start

read design

read_saif -input rtl.saif -

instance_name tb/chip -

auto_map_names

– Must have auto_map_names

– Otherwise it will not annotate your SAIF

– No map file exists here

compile

An example DC script

24

DC post-compile script

saif_map -create_map -input

rtl.saif -source_instance

tb/chip

– Extract the information needed to write a
name map file

saif_map -write_map map.ptpx -type

ptpx

saif_map -write_map map.dc -type

name_map

25

• saif_map -start

• saif_map -read_map map.dc

• read_saif -input rtl.saif -instance tb/chip

-auto_map_names

– This combines the map file with auto name mapping

• place/clock/route_opt -power

• saif_map -create_map -input rtl.saif -

source_instance tb/chip

• saif_map -write_map map_icc.ptpx -type ptpx

An example ICC script

26

PT-PX with RTL SAIF

• Read and time design

• source map.ptpx

• read_saif rtl.saif -strip_path tb/chip

27

PT-PX with SAIF from DC

• DC and ICC can also write out SAIF

• This is then “gate-level” SAIF requiring no

mapping

• However, the activity is still from the RTL

simulation

– Lower accuracy

28

Hierarchical SAIF

29

• Often it's not possible to put together one
toplevel sim that shows worst case power

• Instead engineers would like to pull in
module-level SAIF from smaller, block-
level simulations

• This would allow you to create a chip
“mode”

– Based on certain blocks doing certain tasks

– Can avoid mutually exclusive activities

No decent top-level SAIF?

30

GSM SAIF

Gathering data from multiple sources

uProc

GSM

Transmitter

Infra Red

Transceiver

Chip Top

GSM testbench

GSM

Transmitter

IR testbench

Infra Red

Transceiver

IR SAIF

31

Simulation

• Simulate each block in its own testbench

• Each testbench writes out VCD -> SAIF

GSM testbench

GSM

Transmitter

IR testbench

Infra Red

Transceiver

Simulate VCD SAIF

Simulate VCD SAIF

32

• Read in your SAIF
read_saif -auto_map_names -input blocka.saif

-instance_name tba/DUT -target_instance U_blocka

read_saif -auto_map_names -input blockb.saif

-instance_name tbb/DUT -target_instance U_blockb

read_saif -auto_map_names -input toplevel.saif

-instance_name tb_top/DUT

– Order is important here for annotation

• Compile your design.

How to use multiple SAIF files in DC

33

Create name maps for each SAIF file

• Build the name maps from your SAIF files

saif_map -create_map -input blocka.saif

-source_instance tb_a/DUT -target_instance U_blocka

saif_map -create_map -input blockb.saif …

saif_map -create_map -input toplevel.saif …

Note we still use create_map for all blocks so that mapping

is created for the names in your other SAIF files

34

saif_map -write_map ptpx.map -type ptpx

• Optionally write out a gate-level SAIF

write_saif -output toplevel_synth.saif

Write out the name maps

35

Using these SAIF files in ICC

saif_map -start

read verilog

saif_map -read_map map.dc (Assuming flat DC compile)

Read in your SAIF

read_saif -auto_map_names -input blocka.saif -instance_name

tba/DUT -target_instance U_blocka

read_saif -auto_map_names -input blockb.saif -instance_name

tbb/DUT -target_instance U_blockb

read_saif -auto_map_names -input toplevel.saif

-instance_name tb_top/DUT

place/clock/route_opt -power

36

source map.ptpx

read_saif -strip_path tba/DUT -path

U_blocka blocka.saif

read_saif -strip_path tbb/DUT -path U_blockb

blockb.saif

read_saif rtl.saif -strip_path tb/chip

toplevel.saif

Using this SAIF in PrimeTime-PX

37

What if I have different chip modes?

• Power usage can vary wildly with mode

– 70% of time in standby

– 20% of time receiving and processing

– 10% of time transmitting a signal

• We are not likely to have a simulation!

• Instead we want to combine existing SAIF

• Merge them with appropriate weighting

38

How to merge SAIF files with weights

merge_saif –input_list { \

-input stby.saif –weight 70 \

-input rx_process.saif –weight 20 \

-input transmit.saif –weight 10} \

[-simple_merge] –instance …

• Activity will be normalised over time

• Merged with the weighting specified

39

How is it calculated?

• Essentially the ratios of T0 and T1 are

used

• The percentages are then applied to the

new duration.

• Lets look at some terminology…

40

Switching activity terminology

• Toggle Count (TC):

A toggle is a logic transition (01 or 10).
Toggle count (TC) is the number of toggles.

• Toggle Rate (Tr):

Number of toggles per unit time (usually the
simulation duration)

Tr = TC / duration

• T1 , T0:

Total time a signal is at logic 1, 0

• Static Probability (Sp):

Probability of a logic 1 for a signal

Sp = T1 / duration

0 ns 15 ns 30 ns

So here (units ns):

TC = 3

T0 = 10

T1 = 20

Unused:

TR = 0.1

SP = 2/3

41

Where is this info in a SAIF File?

• Each object has:

– T0

– T1

– TC

– (possibly TX)

(SAIFILE

(SAIFVERSION "2.0")

(DIRECTION "backward")

(DESIGN)

(DATE "Mon May 17 02:33:48 2004")

(VENDOR "Synopsys, Inc")

(PROGRAM_NAME "VCS-Scirocco-MX Power
Compiler")

(VERSION "1.0")

(DIVIDER /)

(TIMESCALE 1 ns)

(DURATION 10000.00)

(INSTANCE I_TOP

(INSTANCE macinst

(NET

(z\[3\]

(T0 6488) (T1 3493) (TX 18)

(TC 26) (IG 0)

)

42

So, how is a merge calculated?

Essentially add the ratios

with weighting

T0merged = T0a/Durationa * weighta
+ T0b/Durationb * weightb

= 140/200 * 80% + 80/100 * 20%

= 0.6 or 60%

= 600 (new duration 1000)

T1

T0

T1

T0

TC = 5

T1 = 60

T0 = 140

Duration 200

Weight 80

TC=10

T1=80

T0=20

Duration 100

Weight 20

43

What about Xs?

Xs are removed from the ratio

T0a is still 140 but the duration is 180

So now T0merged =

T0a/Durationa * weighta +

T0b/Durationb * weightb

= (140/180) * 80% + (20/100) * 20%

= 662.22 (new duration 1000)

T1

T0

TX

T1

T0

TC = 5

T1 = 40

T0 = 140

TX = 20

Duration 200

Weight 80

TC=10

T1=80

T0=20

Duration 100

Weight 20

44

What about toggle counts?

This works by expanding the

durations then weighting

TCa = 5/200

= 25 / 1000

TCb = 20/100

= 200 / 1000

Tcmerged = 25*80% + 200*20%

= 60 (in 1000)

T1

T0

T1

T0

TC = 5

T1 = 60

T0 = 140

Duration 200

Weight 80

TC=10

T1=80

T0=20

Duration 100

Weight 20

45

saif_merge –output results look odd?

• Actually the numbers are the same

• The duration specified is different

• Durationmerged = durationa *weighta +

durationb *weightb

= 200 * 80% + 100 * 20%

= 180

A full description of the formula can be found at

https://solvnet.synopsys.com/retrieve/000360.html

46

What happens to incomplete SAIF?

• This is fine if all SAIF annotates all nets

• What if one SAIF only annotates a block?

– All SAIFs must reference the same instance

– However you may have built a toplevel SAIF

by reading in a block-level SAIF only.

• What happens to the nets left out?

47

Default switching activity

• Nets not annotated by a given SAIF inherit

the default switching activity

– This is 0.1x the fastest clock (default)

– If no clock defined, assume switches 10%

• This can cause a big jump in toggle count!

• Override with

set power_default_toggle_rate_type 0

48

What value do these nets assume?

• Unannotated nets now assumed constant

• The constant value is chosen as the

opposite of the prevailing value

– If saif_a says net is T1=70 T0=30

• Assumes in saif_b this net is constant 0

– If saif_a says T1=20, T0=80

• Assumes in saif_b this net is constant 1

49

You are now SAIF experts!

• Use the best SAIF you can

• Gate level is more accurate and simpler

• You now have the correct name mapping
flow for RTL SAIF

• You can create custom SAIF by

– Merging 2 full files

– Reading SAIF for hierarchical blocks

• Your optimisations will now deliver best
dynamic power for your real chip

50

finis

Predictable Success

