SYNOPSYS

Predictable Success

Low Power Implementation iIn
the 2008.09 Release

Jonathan Dawes
12t May 2009



)
What is the purpose of this tutorial? SU[]

The aim Is to:
 Make you comfortable with SAIF
* Demystify the tool’'s manipulations of SAIF

» Get the best activity information possible

Achieve the best possible dynamic power

SYNoPSYS'

©Synopsys 2009 2



Agenda

« Overview of power optimisation
 Activity information and SAIF

 How to generate good SAIF

* How to use it correctly through the flow

* What can we do if we don’t have good
SAIF?

— How to combine SAIF data from multiple
sources including subblocks

SYNoPsys'

©Synopsys 2009 3



)
What are the types of power usage”? SU[]

* Leakage power %
— Cells that are not switching, but “leak™ power
— This reduces standby battery life
— Address with Multi-Vt libraries
* Dynamic power
— Power used by performing work
— Charging up loads
— This reduces the working-time of your battery
— Addressed in many ways.

SYNoPsys'

©Synopsys 2009 4



Optimisations for dynamic power
during synthesis

 Remap architecture to reduce power cost
* Bury high activity nets inside complex cells
« Swap high activity nets onto low-load pins

Phase Assignment

All these are performed automatically by DC

SYNoPSys:
©Synopsys 2009 5 Predictable Success



Optimisations for dynamic power
during place & route

i
e

Tr =0

Tr =0.8

e Low Power Placement |-

— shorten busy nets,
so reducing the load

—)
=

* optimize_pre_cts_power
— Merge/Split/Remove/Optimize clock gating
— Reduce the dynamic power of the clock tree

— Reduce the dynamic power of data logic through
Improved clock gating

— Physically aware clock gating

SYNoPsys'

©Synopsys 2009 6



Activity information iIs the key

* Dynamic power Is power used doing work

 \WWe need to tell the tools what work looks
like, and where it Is done.

* This drives all dynamic power optimisation

* We must provide “activity” information for
objects in the design.

* This is normally a SAIF file
Switching Activity Interchange Format

SYNoPsys'

©Synopsys 2009



How good iIs your SAIF?

* Do you have the “perfect” SAIF file?
— Accurately represents the real-world activity
— Leaves no gaps or grey areas
— Lucky you! Go and take a break!

* Or maybe not...
— Can’t run gate-level sims early enough?
— Don’t have a single toplevel testbench?
— Need to combine data from multiple sources?

* Have you given up on dynamic power?

SYNoPsys'

©Synopsys 2009 8



The worst case scenario

* The tools will assign “default” activity
— 10% toggle rate wrt the fastest clock

* You can improve this by specifying more
set switching activity —-static probability
0.5 -toggle rate 0.2 [get port in]

* The tool will propagate this data

SYNoPsys'

©Synopsys 2009 9 Predictable Success



i
e

* Use real activity information captured from
an RTL or preferably gate-level simulation

« We will look at proven ways of doing this

* We will also look at combining data from
multiple sources

The best activity information

* The aim Is to get the very best activity data

SYNoPsys'

©Synopsys 2009 10



Obsolete flows for generating SAIF

« RTL forward SAIF
— rtI2saif i1s to be removed

* PLI and DPFLI

SYNoPSYS'

©Synopsys 2009 11



Generating SAIF in VCS

 RTL Simulation
— Direct SAIF
— VCD to SAIF
— VPD to VCD to SAIF

« Gate Level Simulation

SYNoPSYS'

©Synopsys 2009 12



RTL Direct SAIF

* Advantages
— Simple to use
— Directly written out of VCS
— No storage overhead

* |ssues
— System Verilog not well supported

— Multi Dimensional Arrays not supported
— This may result in low annotation due to gaps

SYNoPSYS'

©Synopsys 2009 13 Predictable Success



RTL VCD to SAIF

* Advantages
— This is the correct flow for System Verilog

* |ssues
— VCD file gets very large during simulation

— Some SV constructs still being worked on.
* Interfaces is the biggest gap

— However, this will only create small gaps.
» Propagation will back-fill lots of these

SYNoPsys'

©Synopsys 2009 14 Predictable Success



RTL VPD-VCD-SAIF

* Advantages
— All the same benefits of VCD2SAIF
— VPD is a lot smaller during simulation

* |ssues
— Still need to generate a VCD file on the fly
— Same System verilog issues as VCD-SAIF
— 3 step flow

SYNoPSYS'

©Synopsys 2009 15



i
e

Gate-level simulation

* Advantages
— Simple
— Maps directly to the gates you are optimising

— Accuracy Is much higher as real gates can be
observed

e |ssues

— Gate level simulations may only be possible
late In the flow

— Long simulation runtimes

SYNoPsys'

©Synopsys 2009 16 Predictable Success



SYNOPSYS

Predictable Success

SAIF mapping




i
e

Why do we need SAIF mapping?

« Synthesis changes the names of many
objects

* Netlist-driven tools need to match the
RTL SAIF object names to gates
— ICC
— DC (multi-pass)
— Primetime PX

SYNoPsys'

©Synopsys 2009 18



DC recommended flows

* |nitial compile
— Read RTL and RTL SAIF
— compile
— Either
* Write a gate-level SAIF out

— OR,
* Write out DC and PT-PX name maps

» Subsequent compile incremental flow (ASCII)
— Read DC SAIF

— OR use the name map from initial compile and
read RTL SAIF

SYNoPsys'

©Synopsys 2009 19 Predictable Success



|ICC recommended flow

« DDC retains the activity information

* Read netlist and RTL SAIF plus DC map

— Also use -auto_map_names

— Best coverage comes from using a map file and -
auto_map names*

* Optionally write a PTPX SAIF map out
— May catch a few name changes

*Note read_saif will not accept -map_names at the same time as
-auto_map_names. Always use —auto_map_names

SYNoPsys'

©Synopsys 2009 20 Predictable Success



PrimeTime — PX flow

* Read a netlist plus its related map file
 Read the RTL SAIF

SYNoPSYS'

©Synopsys 2009 21



SYNOPSYS

Predictable Success

Example Flow With RTL SAIF




An example DC script

sailf map -start
read design
read saif -input rtl.saif -

instance name tb/chip -
auto map names

— Must have auto_map_names
— Otherwise it will not annotate your SAIF
— No map file exists here

compile

SYNoPsys'

©Synopsys 2009 23 Predictable Success



DC post-compile script

salf map -create map -input
rtl.saif -source instance
tb/chip

— Extract the information needed to write a
name map file

salf map -write map map.ptpx -type
ptpx

saif map -write map map.dc -type
name map

SYNoPsys'

©Synopsys 2009 24



An example ICC script

* saif map -start
* saif map -read map map.dc

* read saif -input rtl.saif -instance tb/chip
—auto map names

— This combines the map file with auto name mapping

* place/clock/route opt -power

* saif map -create map -input rtl.saif -
source instance tb/chip

* saif map -write map map icc.ptpx -type ptpx

SYNoPsys'

©Synopsys 2009 25 Predictable Success



PT-PX with RTL SAIF

 Read and time design
* source map.ptpx
» read_salf rtl.saif -strip_path tb/chip

SYNoPSYS'

©Synopsys 2009 26



i
e

PT-PX with SAIF from DC

 DC and ICC can also write out SAIF

* This is then “gate-level” SAIF requiring no
mapping

 However, the activity is still from the RTL
simulation
— Lower accuracy

SYNoPSYS'

©Synopsys 2009 27



SYNOPSYS

Predictable Success

Hierarchical SAIF




No decent top-level SAIF?

« Often It's not possible to put together one
toplevel sim that shows worst case power

* Instead engineers would like to pull in
module-level SAIF from smaller, block-

level simulations

* This would allow you to create a chip
‘mode”
— Based on certain blocks doing certain tasks
— Can avoid mutually exclusive activities

SYNoPsys'

©Synopsys 2009 29



Gathering data from multiple sources

GSM

GSM Transmitter
Transmitter

Infra Red
Transceiver Infra Red

Transceiver

NYALLRYAY

©Synopsys 2009 30 Predictable Success




Simulation

 Simulate each block In 1ts own testbench
 Each testbench writes out VCD -> SAIF

GSM testbench

Transmitter
IR testbench
Transceiver

NYALLRYAY

©Synopsys 2009 31 Predictable Success




)
How to use multiple SAIF files in DC SU[)

 Read in your SAIF

read saif -auto map names -input blocka.saif
-instance name tba/DUT -target instance U blocka

read saif -auto map names -input blockb.saif
-instance name tbb/DUT -target instance U blockb

read saif -auto map names -input toplevel.saif
-instance _name tb top/DUT

— Order Is important here for annotation

« Compile your design.

SYNoPSYS'

©Synopsys 2009 32 Predictable Success




N
Create name maps for each SAIF file SU[}

* Build the name maps from your SAIF files

saif map -create map -input blocka.saif

-source instance tb a/DUT -target instance U blocka

saif map -create map -input blockb.saif ...

saif map -create map -input toplevel.saif ..
Note we still use create_map for all blocks so that mapping
IS created for the names in your other SAIF files

SYNoPSYS'

©Synopsys 2009 33 Predictable Success




Write out the name maps

saif map -write map ptpx.map -type ptpx

« Optionally write out a gate-level SAIF

write saif -output toplevel synth.saif

SYNoPSYS'

©Synopsys 2009 34 Predictable Success



il
g

Using these SAIF files in ICC

saif map -start
read verilog

saif map -read map map.dc (Assuming flat DC compile)

Read in your SAIF

read saif -auto map names -input blocka.saif -instance name
tba/DUT -target instance U blocka

read saif -auto map names -input blockb.saif -instance name
tbb/DUT -target instance U blockb

read saif -auto map names -input toplevel.saif

-instance name tb top/DUT

place/clock/route opt -power

SYNOPSYS:
©Synopsys 2009 35 Predictable Success



Using this SAIF in PrimeTime-PX

source map.ptpx

read saif -strip path tba/DUT -path
U blocka blocka.saif

read saif -strip path tbb/DUT -path U blockb
blockb.saif

read saif rtl.saif -strip path tb/chip
toplevel.saif

SYNoPSYS'

©Synopsys 2009 36 Predictable Success



)
What if | have different chip modes? SU[]

* Power usage can vary wildly with mode
— 70% of time in standby
— 20% of time receiving and processing
— 10% of time transmitting a signal

* We are not likely to have a simulation!
 Instead we want to combine existing SAIF
* Merge them with appropriate weighting

SYNoPSYS'

©Synopsys 2009 &



!
How to merge SAIF files with weights SU[]

merge_saif —input_list { \

-IN
-IN
-IN
[-S

out stby.saif —weight 70 \

put rx_process.saif —weight 20 \
put transmit.saif —weight 10} \
Imple_merge] —instance ...

 Activity will be normalised over time
* Merged with the weighting specified

©Synopsys 2009

SYNoPSYS'

38



How iIs It calculated?

* Essentially the ratios of TO and T1 are
used

* The percentages are then applied to the
new duration.

* Lets look at some terminology...

SYNoPSYS'

©Synopsys 2009 39



Switching activity terminology

0 ns

15 ns

30 ns

Unused:
TR=0.1
SP =2/3

So here (units ns):
TC=3
TO=10
T1=20

©Synopsys 2009

40

i
e

Toggle Count (TC):

Atoggle is a logic transition (0->1 or 1-0).
Toggle count (TC) is the number of toggles.

Toggle Rate (Tr):

Number of toggles per unit time (usually the
simulation duration)

Tr = TC / duration

T1,TO:
Total time a signal is at logic 1, 0

Static Probability (Sp):

Probability of a logic 1 for a signal
Sp = Tl / duration

SYNoPSYS'



Where is this info 1n a SAIF File?

SAIFILE
SATFVERSION "2.0™) 1 .
DIRECTION "backward") ¢ EaCh ObJeCt haS-

- T0
- T1
——TC
— (possibly TX)

DATE "Mon May 17 02:33:48 2004"™)
VENDOR "Synopsys, Inc")

PROGRAM NAME "VCS-Scirocco-MX Power
Compiler")
(VERSION "1.0")

(DIVIDER / )
(TIMESCALE 1 ns)
(

(

(
(
(
(DESIGN )
(
(
(

DURATION 10000.00)
INSTANCE I TOP
(INSTANCE macin
(NET
(z\ [3\]
(TO 6488) (T1 3493) (TX 18)
(TC 26) (IG 0)

) e

SYNopPsys:
©Synopsys 2009 41 Predictable Success




So, how Is a merge calculated?

TC=5
102 a0 Essentially add the ratios
eanse® with weighting

TOnerged = TO,/Duration, * weight,

+ TO,/Duration, * weight,

TC=10
Too0 = 140/200 * 80% + 80/100 * 20%
oaen s =0.6 or 60%

= 600 (new duration 1000)

SYNOPSYS'

©Synopsys 2009 42



What about Xs?

TC=5
L Xs are removed from the ratio
TX =20 T0, is still 140 but the duration is 180
Duration 200
Weight 80

SO NOW TOerged =

TO_/Duration_ * weight, +

o TO,/Duration, * weight,
T1=80
buraion 100 = (140/180) * 80% + (20/100) * 20%
Weight 20 = 662.22 (new duration 1000)

SYNOPSYs

©Synopsys 2009 43



What about toggle counts?

TC=5

0 140 This works by expanding the
ot 80 durations then weighting
TC, =5/200
=25/1000
.. TC, =20/100
Fomo0 =200 / 1000
Duration 100

Weight 20 TCerged = 29780% + 200*20%
= 60 (in 1000)

SYNOPSYS'

©Synopsys 2009



)
salf_merge —output results look odd? SU[]

» Actually the numbers are the same
* The duration specified Is different

* Durationoqeq = duration, *weight, +
duration,, *weight,

= 200 * 80% + 100 * 20%

= 180

A full description of the formula can be found at
https://solvnet.synopsys.com/retrieve/000360.html

SYNoPSYS'

©Synopsys 2009 45



I
What happens to incomplete SAIF? SU[]

 This is fine If all SAIF annotates all nets

 What if one SAIF only annotates a block?
— All SAIFs must reference the same instance

— However you may have built a toplevel SAIF
by reading in a block-level SAIF only.

* What happens to the nets left out?

SYNoPsys'

©Synopsys 2009 46



i
e

* Nets not annotated by a given SAIF inherit
the default switching activity

— This Is 0.1x the fastest clock (default)
— If no clock defined, assume switches 10%

Default switching activity

* This can cause a big jump in toggle count!

» Override with
set power default toggle rate type 0

SYNoPsys'

©Synopsys 2009 47



il
e

What value do these nets assume?

« Unannotated nets now assumed constant

 The constant value is chosen as the
opposite of the prevailing value

— If saif a says netis T1=70 TO=30
« Assumes in saif b this net is constant O

— If saif a says T1=20, TO=80
« Assumes in saif b this netis constant 1

SYNoPSYS'

©Synopsys 2009 48 Predictable Success



You are now SAIF experts!

* Use the best SAIF you can
« Gate level is more accurate and simpler

* You now have the correct name mapping
flow for RTL SAIF

* You can create custom SAIF by
— Merging 2 full files
— Reading SAIF for hierarchical blocks

 Your optimisations will now deliver best
dynamic power for your real chip

SYNoPsys'

©Synopsys 2009 49



SYNOPSYS

Predictable Success

SYNOPSYS'

©Synopsys 2009 50 Predictable Success



