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The aim is to:

• Make you comfortable with SAIF

• Demystify the tool’s manipulations of SAIF

• Get the best activity information possible

Achieve the best possible dynamic power

What is the purpose of this tutorial?
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• Overview of power optimisation

• Activity information and SAIF

• How to generate good SAIF

• How to use it correctly through the flow

• What can we do if we don’t have good 

SAIF?

– How to combine SAIF data from multiple 

sources including subblocks

Agenda
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What are the types of power usage?

• Leakage power

– Cells that are not switching, but “leak” power

– This reduces standby battery life

– Address with Multi-Vt libraries

• Dynamic power

– Power used by performing work

– Charging up loads

– This reduces the working-time of your battery

– Addressed in many ways.
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Optimisations for dynamic power

during synthesis

• Remap architecture to reduce power cost

• Bury high activity nets inside complex cells

• Swap high activity nets onto low-load pins

All these are performed automatically by DC
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Optimisations for dynamic power 

during place & route

• Low Power Placement 

– shorten busy nets,

so reducing the load

• optimize_pre_cts_power

– Merge/Split/Remove/Optimize clock gating

– Reduce the dynamic power of the clock tree

– Reduce the dynamic power of data logic through 
improved clock gating

– Physically aware clock gating

Tr = 0.3

Tr = 0.8

Tr = 0.3

Tr = 0.8
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Activity information is the key

• Dynamic power is power used doing work

• We need to tell the tools what work looks 

like, and where it is done.

• This drives all dynamic power optimisation

• We must provide “activity” information for 

objects in the design.

• This is normally a SAIF file

Switching Activity Interchange Format
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How good is your SAIF?

• Do you have the “perfect” SAIF file?

– Accurately represents the real-world activity

– Leaves no gaps or grey areas

– Lucky you!  Go and take a break!

• Or maybe not…

– Can’t run gate-level sims early enough?

– Don’t have a single toplevel testbench?

– Need to combine data from multiple sources?

• Have you given up on dynamic power?



9

The worst case scenario

• The tools will assign “default” activity

– 10% toggle rate wrt the fastest clock

• You can improve this by specifying more
set_switching_activity –static_probability

0.5 –toggle_rate 0.2 [get_port in]

• The tool will propagate this data
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The best activity information

• Use real activity information captured from 

an RTL or preferably gate-level simulation

• We will look at proven ways of doing this

• We will also look at combining data from 

multiple sources

• The aim is to get the very best activity data
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Obsolete flows for generating SAIF

• RTL forward SAIF

– rtl2saif is to be removed

• PLI and DPFLI
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Generating SAIF in VCS

• RTL Simulation

– Direct SAIF

– VCD to SAIF

– VPD to VCD to SAIF

• Gate Level Simulation
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RTL Direct SAIF

• Advantages

– Simple to use

– Directly written out of VCS

– No storage overhead

• Issues

– System Verilog not well supported

– Multi Dimensional Arrays not supported

– This may result in low annotation due to gaps
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RTL VCD to SAIF

• Advantages

– This is the correct flow for System Verilog

• Issues

– VCD file gets very large during simulation

– Some SV constructs still being worked on.

• Interfaces is the biggest gap

– However, this will only create small gaps.

• Propagation will back-fill lots of these
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RTL VPD-VCD-SAIF

• Advantages

– All the same benefits of VCD2SAIF

– VPD is a lot smaller during simulation

• Issues

– Still need to generate a VCD file on the fly

– Same System verilog issues as VCD-SAIF

– 3 step flow
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Gate-level simulation 

• Advantages

– Simple

– Maps directly to the gates you are optimising

– Accuracy is much higher as real gates can be 
observed

• Issues

– Gate level simulations may only be possible 
late in the flow

– Long simulation runtimes
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SAIF mapping
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Why do we need SAIF mapping?

• Synthesis changes the names of many 

objects

• Netlist-driven tools need to match the

RTL SAIF object names to gates

– ICC

– DC (multi-pass)

– Primetime PX
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DC recommended flows

• Initial compile
– Read RTL and RTL SAIF

– compile

– Either 
• Write a gate-level SAIF out

– OR,
• Write out DC and PT-PX name maps

• Subsequent compile incremental flow (ASCII)
– Read DC SAIF

– OR use the name map from initial compile and 
read RTL SAIF



20

• DDC retains the activity information

• Read netlist and RTL SAIF plus DC map
– Also use -auto_map_names

– Best coverage comes from using a map file and -
auto_map_names*

• Optionally write a PTPX SAIF map out
– May catch a few name changes

*Note read_saif will not accept -map_names at the same time as 

-auto_map_names.  Always use –auto_map_names

ICC recommended flow
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• Read a netlist plus its related map file

• Read the RTL SAIF

PrimeTime – PX flow
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Example Flow With RTL SAIF
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saif_map -start

read design

read_saif -input rtl.saif -

instance_name tb/chip -

auto_map_names

– Must have auto_map_names

– Otherwise it will not annotate your SAIF

– No map file exists here

compile

An example DC script
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DC post-compile script

saif_map -create_map -input 

rtl.saif -source_instance

tb/chip

– Extract the information needed to write a 
name map file

saif_map -write_map map.ptpx -type 

ptpx

saif_map -write_map map.dc -type 

name_map
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• saif_map -start

• saif_map -read_map map.dc

• read_saif -input rtl.saif -instance tb/chip  

-auto_map_names

– This combines the map file with auto name mapping

• place/clock/route_opt -power

• saif_map -create_map -input rtl.saif -

source_instance tb/chip

• saif_map -write_map map_icc.ptpx -type ptpx

An example ICC script
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PT-PX with RTL SAIF

• Read and time design

• source map.ptpx

• read_saif rtl.saif -strip_path tb/chip
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PT-PX with SAIF from DC

• DC and ICC can also write out SAIF

• This is then “gate-level” SAIF requiring no 

mapping

• However, the activity is still from the RTL 

simulation

– Lower accuracy
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Hierarchical SAIF
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• Often it's not possible to put together one 
toplevel sim that shows worst case power

• Instead engineers would like to pull in 
module-level SAIF from smaller, block-
level simulations

• This would allow you to create a chip 
“mode”

– Based on certain blocks doing certain tasks

– Can avoid mutually exclusive activities

No decent top-level SAIF?
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GSM SAIF

Gathering data from multiple sources

uProc

GSM 

Transmitter

Infra Red 

Transceiver

Chip Top

GSM testbench

GSM 

Transmitter

IR testbench

Infra Red 

Transceiver

IR SAIF
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Simulation

• Simulate each block in its own testbench

• Each testbench writes out VCD -> SAIF

GSM testbench

GSM 

Transmitter

IR testbench

Infra Red 

Transceiver

Simulate VCD SAIF

Simulate VCD SAIF
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• Read in your SAIF
read_saif -auto_map_names -input blocka.saif

-instance_name tba/DUT -target_instance U_blocka

read_saif -auto_map_names -input blockb.saif

-instance_name tbb/DUT -target_instance U_blockb

read_saif -auto_map_names -input  toplevel.saif

-instance_name tb_top/DUT

– Order is important here for annotation

• Compile your design.

How to use multiple SAIF files in DC
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Create name maps for each SAIF file

• Build the name maps from your SAIF files

saif_map -create_map -input blocka.saif

-source_instance tb_a/DUT -target_instance U_blocka

saif_map -create_map -input blockb.saif …

saif_map -create_map -input toplevel.saif …

Note we still use create_map for all blocks so that mapping 

is created for the names in your other SAIF files
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saif_map -write_map ptpx.map -type ptpx

• Optionally write out a gate-level SAIF

write_saif -output toplevel_synth.saif

Write out the name maps
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Using these SAIF files in ICC

saif_map -start

read verilog

saif_map -read_map map.dc (Assuming flat DC compile)

Read in your SAIF

read_saif -auto_map_names -input blocka.saif -instance_name

tba/DUT -target_instance U_blocka

read_saif -auto_map_names -input blockb.saif -instance_name

tbb/DUT -target_instance U_blockb

read_saif -auto_map_names -input  toplevel.saif

-instance_name tb_top/DUT

place/clock/route_opt -power
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source map.ptpx

read_saif -strip_path tba/DUT -path 

U_blocka blocka.saif

read_saif -strip_path tbb/DUT -path U_blockb

blockb.saif

read_saif rtl.saif -strip_path tb/chip 

toplevel.saif

Using this SAIF in PrimeTime-PX



37

What if I have different chip modes?

• Power usage can vary wildly with mode

– 70% of time in standby

– 20% of time receiving and processing

– 10% of time transmitting a signal

• We are not likely to have a simulation!

• Instead we want to combine existing SAIF

• Merge them with appropriate weighting
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How to merge SAIF files with weights

merge_saif –input_list {  \

-input stby.saif –weight 70 \

-input rx_process.saif –weight 20 \

-input transmit.saif –weight 10} \

[-simple_merge] –instance …

• Activity will be normalised over time

• Merged with the weighting specified
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How is it calculated?

• Essentially the ratios of T0 and T1 are 

used

• The percentages are then applied to the 

new duration.

• Lets look at some terminology…
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Switching activity terminology

• Toggle Count (TC):

A toggle is a logic transition (01 or 10).
Toggle count (TC) is the number of toggles.

• Toggle Rate (Tr):

Number of toggles per unit time (usually the 
simulation duration)

Tr = TC / duration

• T1 , T0:

Total time a signal is at logic 1, 0

• Static Probability (Sp):

Probability of a logic 1 for a signal

Sp = T1 / duration

0 ns 15 ns      30 ns

So here (units ns):

TC = 3

T0 = 10

T1 = 20

Unused:

TR = 0.1

SP = 2/3 
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Where is this info in a SAIF File?

• Each object has:

– T0

– T1

– TC

– (possibly TX)

(SAIFILE

(SAIFVERSION "2.0")

(DIRECTION "backward")

(DESIGN )

(DATE "Mon May 17 02:33:48 2004")

(VENDOR "Synopsys, Inc")

(PROGRAM_NAME "VCS-Scirocco-MX Power 
Compiler")

(VERSION "1.0")

(DIVIDER / )

(TIMESCALE 1 ns)

(DURATION 10000.00)

(INSTANCE I_TOP

(INSTANCE macinst

(NET

(z\[3\]

(T0 6488) (T1 3493) (TX 18)

(TC 26) (IG 0)

)        ... ...
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So, how is a merge calculated?

Essentially add the ratios 

with weighting

T0merged = T0a/Durationa * weighta
+ T0b/Durationb * weightb

= 140/200 * 80% + 80/100 * 20%

= 0.6 or 60% 

= 600 (new duration 1000)

T1

T0

T1

T0

TC = 5

T1 = 60

T0 = 140

Duration 200

Weight 80

TC=10

T1=80

T0=20

Duration 100

Weight 20
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What about Xs?

Xs are removed from the ratio

T0a is still 140 but the duration is 180

So now T0merged = 

T0a/Durationa * weighta +

T0b/Durationb * weightb

= (140/180) * 80% + (20/100) * 20%

= 662.22 (new duration 1000)

T1

T0

TX

T1

T0

TC = 5

T1 = 40

T0 = 140

TX = 20

Duration 200

Weight 80

TC=10

T1=80

T0=20

Duration 100

Weight 20
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What about toggle counts?

This works by expanding the 

durations then weighting

TCa = 5/200

= 25 / 1000

TCb = 20/100

= 200 / 1000

Tcmerged = 25*80% + 200*20%

= 60 (in 1000)   

T1

T0

T1

T0

TC = 5

T1 = 60

T0 = 140

Duration 200

Weight 80

TC=10

T1=80

T0=20

Duration 100

Weight 20
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saif_merge –output results look odd?

• Actually the numbers are the same

• The duration specified is different

• Durationmerged = durationa *weighta +             

durationb *weightb

= 200 * 80% + 100 * 20%

= 180

A full description of the formula can be found at

https://solvnet.synopsys.com/retrieve/000360.html
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What happens to incomplete SAIF?

• This is fine if all SAIF annotates all nets

• What if one SAIF only annotates a block?

– All SAIFs must reference the same instance

– However you may have built a toplevel SAIF 

by reading in a block-level SAIF only.

• What happens to the nets left out?
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Default switching activity

• Nets not annotated by a given SAIF inherit 

the default switching activity

– This is 0.1x the fastest clock (default)

– If no clock defined, assume switches 10%

• This can cause a big jump in toggle count!

• Override with

set power_default_toggle_rate_type 0
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What value do these nets assume?

• Unannotated nets now assumed constant

• The constant value is chosen as the 

opposite of the prevailing value

– If saif_a says net is T1=70 T0=30

• Assumes in saif_b this net is constant 0

– If saif_a says T1=20, T0=80

• Assumes in saif_b this net is constant 1
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You are now SAIF experts!

• Use the best SAIF you can

• Gate level is more accurate and simpler

• You now have the correct name mapping 
flow for RTL SAIF

• You can create custom SAIF by

– Merging 2 full files

– Reading SAIF for hierarchical blocks

• Your optimisations will now deliver best 
dynamic power for your real chip
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finis

Predictable Success


